
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-3710: Computer Hardware Design Winter 2019

1 Instructor: Daniel Llamocca
TA: David Stern

Laboratory 2
(Due date: 002: February 6th, 003: February 7th)

OBJECTIVES
✓ Implement a large combinational circuit using the Structural Description in VHDL.
✓ Introduce floating point and fixed point representations for VHDL implementation and Vivado simulation.

VHDL CODING

✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: adder/subtractor and busmux.

FIRST ACTIVITY: FLOATING POINT ADDER/SUBTRACTOR (100/100)
▪ Implement the following single-precision (E=8, P=23), floating point adder/subtractor. The circuit only works for ordinary

numbers generating ordinary numbers (e.g.: the cases 𝑆 = 𝐴 ± 𝐵 = 0, 𝐴 = 0, or 𝐵 = 0 are not considered by this circuit).

The exponents in the circuit are biased exponents, so they always are positive numbers.

▪ U_ABS_SIGN: This circuit computes the absolute value of the difference of two unsigned numbers (𝑒1 and 𝑒2). It also

generates the signal 𝑠𝑚.

𝑒1, 𝑒2 ∈ [0, 2𝐸 − 1] → 𝑒1 − 𝑒2 ∈ [−(2𝐸 − 1), 2𝐸 − 1] → |𝑒1 − 𝑒2| ∈ [0, 2𝐸 − 1] .
So, |𝑒1 − 𝑒2| only needs 𝐸 bits as an unsigned number.
𝑒1 ≥ 𝑒2 → 𝑠𝑚 = 0, 𝑒𝑝 = 𝑒1, 𝑓𝑥 = 𝑓2, 𝑓𝑦 = 𝑓1

𝑒1 < 𝑒2 → 𝑠𝑚 = 1, 𝑒𝑝 = 𝑒2, 𝑓𝑥 = 𝑓1, 𝑓𝑦 = 𝑓2

EE

e1 e2

PP
fX fY

P+1

sX

P+1

sY

1 1

2-i

SM to
2C

sg1 sg2

P+2 P+2

+/-+/-

add/sub

U_ABS_SIGN

U_ABS

P+3

P+2

2i

P+2

s

sg

MSB

LZD

E
e

P

f

sm

ep

...

E

dir

+/-

SM to
2C

01 10

f1 f2

P P

01 10

P+1 P+1

E

e1 f1
sg1

e2 f2
sg2

e fsg

±

P+1 P+1

1

32 bits

FP
add/sub

32

A B

32

32

S

A

B

S

add/sub

0: +

1: -

10

...

...

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-3710: Computer Hardware Design Winter 2019

2 Instructor: Daniel Llamocca
TA: David Stern

𝑠𝑚 𝑒𝑝 𝑠𝑥 𝑠𝑦 𝑡1 𝑡2

0 𝑒1 𝑠2 = 1. 𝑓2 𝑠1 = 1. 𝑓1 𝑠1
𝑠2

2|𝑒1−𝑒2|

1 𝑒2 𝑠1 = 1. 𝑓1 𝑠2 = 1. 𝑓2
𝑠1

2|𝑒1−𝑒2|
 𝑠2

𝑠𝑥: operand that gets divided by 2|𝑒1−𝑒2|

▪ Barrel shifter 2-i: This circuit performs alignment of 𝑠𝑥, where we always shift to the right by |𝑒1 − 𝑒2| bits. Use the VHDL

code mybarrelshift_gen.vhd with dir=‘1’ and SHIFTTYPE = “LOGICAL”.

▪ SM to 2C: This block converts a number represented as a sign and magnitude into a 2C number. If sign is ‘0’, then we

append a 0 to the MSB. If the sign is ‘1’, we get the negative number in 2C representation. This increases the bit-width to
𝑃 + 2 bits.

▪ Main adder/subtractor: This circuit operates in 2C arithmetic. Note that it is implied that we need to sign-extend the

(𝑃 + 2)-bit operands to 𝑃 + 3 bits.

Input operands  [−2𝑃+1 + 1, 2𝑃+1 − 1], Output result  [−2𝑃+2 + 2, 2𝑃+2 − 2].

▪ U_ABS block: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned

number. The absolute value  [0, 2𝑃+2 − 2], this only requires 𝑃 + 2 bits in unsigned representation.

▪ Leading Zero Detector (LZD): This circuit outputs a number that indicates the amount of shifting required to normalize

the result of the summation. It is also used to adjust the exponent. This circuit is commonly implemented using a priority
encoder. result  [−1, 𝑝]. The result is provided as sign and magnitude. Use the following code: myLZD.vhd.

result output sign Actions

[0, 𝑝] 𝑠ℎ ∈ [0, 𝑝] 0
The barrel shifter needs to shift to the left by 𝑠ℎ bits.

Exponent adder/subtractor needs to subtract 𝑠ℎ from the exponent 𝑒𝑝.

−1 𝑠ℎ = 1 1
The barrel shifter needs to shift to the right by 1 bit.
Exponent adder/subtractor needs to add 1 to the exponent 𝑒𝑝.

▪ Exponent adder/subtractor: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are

unsigned, we zero-extend to 𝐸 + 1 bits. Note that for ordinary numbers, 𝑒𝑝 ∈ [1, 2𝐸 − 2]. The (𝐸 + 1)-bit result (biased

exponent) cannot be negative: at most, we subtract 𝑃 from 𝑒𝑝, or add 1. Thus, we use the unsigned portion: 𝐸 bits (LSBs).

▪ Barrel shifter 2i: It performs normalization of the final summation. We shift to the left (from 0 to 𝑃 bits) or to the right (1

bit). Use the VHDL code mybarrelshift_GEN.vhd with SHIFTTYPE=“LOGICAL” (unsigned input), dir=sign(LZD).

▪ VIVADO DESIGN FLOW FOR FPGAs – NEXYS A7-50T

✓ Create a new Vivado Project. Select the XC7A50T-1CSG324 Artix-7 FPGA device.

✓ Write the VHDL code for the 32-bit floating point adder subtractor. Utilize the Structural Description: create a separate

file for the components (2-to-1 bus MUX, SM to 2C, U_ABS, LZD, Barrel shifter, adder/subtractor, U_ABS_SIGN), and the
top file (where you will interconnect all the components).

✓ Write the VHDL testbench to test the following cases:
60A10000 + C2F97000 = 60A10000

40B00000 + C2FA8000 = C2EF8000

42FA8000 + C0E00000 = 42EC8000

10DAD000 – 90FAD000 = 116AD000

3DE38866 – B300D959 = 3DE3886A

60A10000 – 60A1F000 = DCF00000

✓ Perform Functional Simulation and Timing Simulation of your design. Demonstrate this to your TA.

Note that when testing, it might be very useful to represent the inputs and output in single floating point precision. Or
we might also want to represent the intermediate signals not only as integer numbers but also as fixed point numbers.
You can use the Radix  Real Settings in Vivado simulator window to do so.

▪ Submit (as a .zip file) all the generated files: VHDL code files and VHDL testbench to Moodle (an assignment will be created).

DO NOT submit the whole Vivado Project.

TA signature: ________________________________ Date: __________________________

